(luogu4884) 多少个 1?

原题链接

思路:

纯数学题

\[ \begin{aligned} & 11 \cdots 1 \equiv K(mod\ m) \\ \Longrightarrow & 99 \cdots 9 \equiv 9K(mod\ m) \\ \Longrightarrow & 10^N \equiv 9K+1(mod\ m) \\ \end{aligned} \]

由于 \(m\) 是质数,所以逆推也成立.

使用 BSGS 求解即可. (代码中用的是 exBSGS 但是数据保证只需要用 BSGS 即可)

需要注意乘法的溢出问题.

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include <cstdio>
#include <cmath>
#include <unordered_map>
using std::unordered_map;
#define int long long //省事:)

int gcd(int a,int b) {
return b==0 ? a : gcd(b,a%b);
}
int exgcd(int a,int b,int& x,int& y) {
if(b == 0) {
x = 1; y = 0;
return a;
}
int g = exgcd(b,a%b,y,x);
y -= a/b*x;
return g;
}
int inv(int a,int m) { //求逆
int ret,y;
exgcd(a,m,ret,y);
return (ret+m)%m;
}

int exbsgs(int a,int p,int b) {
if(b==1) {
return 0;
}
int c = 1,g,k(0);
while((g=gcd(a,p))!=1) {
if(b%g!=0) {
return -1;
}
c = (__int128)c*(a/g)%p; //注意乘法溢出
b /= g;
p /= g;
++k;
if(b == 1) {
return k;
}
}
b = (__int128)b*inv(c,p)%p; //同上
int m = ceil(sqrt(p));
unordered_map<int,int> e;
e[1] = 0;
int x = a%p;
for(int i(1);i<m;++i) {
if(x==b) {
return i+k;
}
if(!e.count(x)) {
e[x] = i;
}
x = (__int128)x*a%p;
}
int anm = inv(x,p);
x = ((__int128)b*anm)%p;
for(int i(1);i<=m;++i) {
if(e.count(x)) {
return i*m + e[x] + k;
}
x = ((__int128)x*anm)%p;
}
return -1;
}

signed main() {
int k,m;
scanf("%lld %lld",&k,&m);
k = (k*9+1)%m;
int ans = exbsgs(10,m,k);
printf("%lld",ans);
return 0;
}